Estimating true brain connectivity from EEG/MEG data invariant to linear and static transformations in sensor space

نویسندگان

  • Arne Ewald
  • Laura Marzetti
  • Filippo Zappasodi
  • Frank C. Meinecke
  • Guido Nolte
چکیده

The imaginary part of coherency is a measure to investigate the synchronization of brain sources on the EEG/MEG sensor level, robust to artifacts of volume conduction meaning that independent sources cannot generate a significant result. It does not mean, however, that volume conduction is irrelevant when true interactions are present. Here, we analyze in detail the possibilities to construct measures of true brain interactions which are strictly invariant to linear spatial transformations of the sensor data. Specifically, such measures can be constructed from maximization of imaginary coherency in virtual channels, bivariate measures as a corrected variate of imaginary coherence, and global measures indicating the total interaction contained within a space or between two spaces. A complete theoretic framework on this question is provided for second order statistical moments. Relations to existing linear and nonlinear approaches are presented. We applied the methods to resting state EEG data, showing clear interactions at all bands, and to a combined measurement of EEG and MEG during rest condition and a finger tapping task. We found that MEG was capable of observing brain interactions which were not observable in the EEG data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A state-space model of cross-region dynamic connectivity in MEG/EEG

Cross-region dynamic connectivity, which describes the spatio-temporal dependence of neural activity among multiple brain regions of interest (ROIs), can provide important information for understanding cognition. For estimating such connectivity, magnetoencephalography (MEG) and electroencephalography (EEG) are well-suited tools because of their millisecond temporal resolution. However, localiz...

متن کامل

Source connectivity analysis with MEG and EEG.

Interactions between functionally specialized brain regions are crucial for normal brain function. Magnetoencephalography (MEG) and electroencephalography (EEG) are techniques suited to capture these interactions, because they provide whole head measurements of brain activity in the millisecond range. More than one sensor picks up the activity of an underlying source. This field spread severely...

متن کامل

Improved Localization of Cortical Activity By Combining EEG and MEG with MRI Cortical Surface Reconstruction

We describe a comprehensive linear approach to the problem of imaging brain activity with high temporal as well as spatial resolution based on combining EEG and MEG data with anatomical constraints derived from MRI images. The “inverse problem” of estimating the distribution of dipole strengths over the cortical surface is highly underdetermined, even given closely spaced EEG and MEG recordings...

متن کامل

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

Characterization of neuromagnetic brain rhythms over time scales of minutes using spatial independent component analysis.

Independent component analysis (ICA) of electroencephalographic (EEG) and magnetoencephalographic (MEG) data is usually performed over the temporal dimension: each channel is one row of the data matrix, and a linear transformation maximizing the independence of component time courses is sought. In functional magnetic resonance imaging (fMRI), by contrast, most studies use spatial ICA: each time...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 60 1  شماره 

صفحات  -

تاریخ انتشار 2012